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Abstract: In this paper we investigate the vacuum polarization effect associated with a

quantum massive scalar field in a higher dimensional de Sitter spacetime in the presence

of a cosmic string. Because this investigation has been developed in a pure de Sitter space,

here we are mainly interested on the effects induced by the presence of the string. So this

analysis is developed by expressing the complete Wightman function as the sum of two

terms: The first one corresponds to the bulk where the cosmic string is absent and the

second one is induced by the presence of the string. By using the Abel-Plana summation

formula, we show that for points away from the string the latter is finite at the coincidence

limit and it is used to evaluate the vacuum averages of the square of the field and the

energy-momentum tensor induced by the cosmic string. Simple asymptotic formulae are

obtained for these expectation values for points near the string and at large distances from

it. It is shown that, depending on the curvature radius of de Sitter spacetime, two regimes

are realized with monotonic and oscillatory behavior of the vacuum expectation values at

large distances.
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1 Introduction

De Sitter (dS) space is the curved spacetime which has been most studied in quantum field

theory during the past two decades. The main reason resides in the fact that it is maximally

symmetric and several physical problems can be exactly solvable on this background;1

moreover the importance of these theoretical analysis increased by the appearance of the

inflationary cosmology scenario [2]. In great number of inflationary models, approximated

dS spacetime is employed to solve relevant problems in standard cosmology. During an

inflationary epoch, quantum fluctuations in the inflaton field introduce inhomogeneities and

may affect the transition toward the true vacuum. These fluctuations play important role in

the generation of cosmic structures from inflation. More recently astronomical observations

of high redshift supernovae, galaxy clusters and cosmic microwave background [3] indicate

that at the present epoch, the Universe is accelerating and can be well approximated by a

world with a positive cosmological constant.

Cosmic strings are linear topologically stable gravitational defects which appear in

the framework of grand unified theories. These objects could be produced in very early

Universe as a consequence of spontaneous breakdown of gauge symmetry [4, 5]. Although

recent observations data on the cosmic microwave background have ruled out cosmic strings

as the primary source for primordial density perturbation, they are still candidate for the

1De Sitter space enjoys the same degree of symmetry as the Minkowski one [1]
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generation of a number of interesting physical effects such as gamma ray burst [6], gravi-

tational waves [7] and high energy cosmic rays [8]. Recently, cosmic strings have attracted

renewed interest partly because a variant of their formation mechanism is proposed in the

framework of brane inflation [9]–[11].

Many of high energy theories of fundamental physics are formulated in higher di-

mensional spacetimes. Although topological defects have been first analyzed in four-

dimensional spacetime [4, 5], they have been considered in the context of braneworld

as well. In this scenario the defects live in a n-dimensions submanifold embedded in a

(4 + n)-dimensional Universe. The cosmic string case corresponds to two additional extra

dimensions. In this context the gravitational effect of global strings has been considered

in [12, 13] as responsible for the compactification from six to four spacetime dimensions,

naturally producing the observed hierarchy between electroweak and gravitational forces.

The analysis of quantum effects for various spin fields on the background of dS spacetime,

have been discussed by several authors (see, for instance, [1] and [14]–[32] and references

therein). Also for the cosmic string spacetime these analysis have considered in [33]–[38]

and [39]–[43], for scalar and fermionic fields respectively.

In this paper, we shall investigate the one-loop quantum effects arising from vacuum

fluctuations associated with massive scalar field on the background of higher dimensional

de Sitter spacetime considering the presence of a cosmic string in it (for cosmic strings in

background of dS spacetime see [44]–[47]). Consequently these effects will take into account

the presence of the curvature of the spacetime and the non-trivial topology associated with

the two-dimensional conical sub-space. The results obtained here can be used, in particular,

for the investigation of the effects of the quantum fluctuations induced by the string in

the inflationary phase. Though the cosmic strings produced in phase transitions before

or during early stages of inflation would have been drastically diluted by the expansion,

the formation of defects during inflation can be triggered by a coupling of the symmetry

breaking field to the inflaton field or to the curvature of the background spacetime (see,

for example, [5]). The cosmic string can also be continuously created during inflation by

quantum-mechanical tunnelling [48]. Another class of models to which the results of the

present paper are applicable corresponds to string-driven inflation where the cosmological

expansion is driven entirely by the string energy [49]. The problem under consideration is

also of separate interest as an example with gravitational and topological polarizations of

the vacuum, where all calculations can be performed in a closed form.

The paper is organized as follows. In section 2 we present the background associated

with the geometry under consideration and the solution of the Klein-Gordon equation ad-

mitting an arbitrary curvature coupling. Also we present the complete Wightman function

and consider the special case where the planar angle deficit in the cosmic string subspace

is an integer fraction of 2π. In sections 3 and 4 we calculate the vacuum expectation values

of the field squared and the energy-momentum tensor induced by the cosmic string. Fi-

nally the main results of this paper are summarized in section 5. Appendix contains some

technical details of the obtainment of the Wightaman function in a more workable form.

– 2 –
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2 Wightman function

The main objective of this section is to calculate the positive frequency Wightman function

associated with a massive scalar field in a higher-dimensional de Sitter spacetime taking

into account the presence of a cosmic string. This quantity is important to the calculation

of scalar vacuum averages. In order to do that we first obtain the complete set of eigen-

functions for the Klein-Grodon equation admitting an arbitrary curvature coupling. The

geometry associated with the corresponding background spacetime is given by the following

line element:

ds2 = dt2 − e2t/α

(

dr2 + r2dφ2 +

N
∑

i=1

dz2
i

)

, (2.1)

where r ≥ 0 and φ ∈ [0, 2π/q] define the coordinates on the conical geometry, (t, zi) ∈
(−∞, ∞), and the parameter α is related with the cosmological constant and Ricci scalar

by the formulae

Λ =
(D − 1)(D − 2)

2α2
, R =

D(D − 1)

α2
, (2.2)

being D the dimension of the spacetime given by D = 3 + N . The parameter q is bigger

than unity and codifies the presence of the cosmic string.2 For further analysis, in addition

to the synchronous time coordinate t we shall use the conformal time τ defined according to

τ = −αe−t/α , −∞ < τ < 0 . (2.3)

In terms of this coordinate the above line element takes the form

ds2 = (α/τ)2

(

dτ2 − dr2 − r2dφ2 −
N
∑

i=1

dz2
i

)

. (2.4)

The line element (2.1) can also be written in static coordinates. For simplicity we

consider the corresponding coordinate transformation in the case D = 4 with N = 1. This

transformation is given by the relations

t = ts +
α

2
ln
(

1 − r2s/α
2
)

, r =
rse

−ts/α sin θ
√

1 − r2s/α
2
,

z1 =
rse

−ts/α cos θ
√

1 − r2s/α
2
, φ = φ, (2.5)

and the line element takes the form

ds2 =
(

1 − r2s/α
2
)

dt2s −
dr2s

1 − r2s/α
2
− r2s

(

dθ2 + sin2 θdφ2
)

, (2.6)

with 0 ≤ φ ≤ 2π/q. Introducing a new angular coordinate ϕ = qφ, from (2.6) we obtain

the static line element of the de Sitter spacetime with deficit angle previously discussed

2It can be shown that by defining the coordinates z0 = α sinh(t/α)+ 1

2α
et/α(r2+~x2) , zD = α cosh(t/α)−

1

2α
et/α(r2 + ~x2) , z1 = et/αr cos φ , z2 = et/αr sin φ , and zi+2 = et/αxi, they represent a hyperboloid

z2
0 − z2

1 − z2
2 −

P

z2
i − z2

D = −α2 embedded in a (D + 1)-dimensional conical spacetime.

– 3 –
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in [46]. In this paper it is shown that to leading order in the gravitational coupling the

effect of the vortex on de Sitter spacetime is to create a deficit angle in the metric (2.6).

The field equation that will be considered is
(

∇l∇l +m2 + ξR
)

Φ(x) = 0 , (2.7)

where ξ is an arbitrary curvature coupling constant. The complete set of solutions of this

equation in the coordinate system defined by (2.4) is:

Φσ(x) = Cση
(D−1)/2H(1)

ν (λη)Jq|n|(pr)e
ik·z+inφ , η = αe−t/α, (2.8)

where λ =
√

p2 + k2, k = |k|,

ν =
√

(D − 1)2/4 − ξD(D − 1) −m2α2, n = 0,±1,±2, . . . (2.9)

In (2.8), H
(1)
ν and Jν represent the Hankel and Bessel functions respectively, and σ ≡

(p, k, n) is the set of quantum numbers, being p ∈ [0, ∞). The coefficient Cσ can be

found by the orthonormalization condition

− i

∫

dD−1x
√

|g|g00 [Φσ(x)∂tΦ
∗
σ′(x) − Φ∗

σ′(x)∂tΦ
∗
σ(x)] = δσ,σ′ , (2.10)

where the integral is evaluated over the spatial hypersurface τ = const, and δσ,σ′ represents

the Kronecker-delta for discrete indices and Dirac-delta function for continuous ones. This

leads to the result

Cσ
2 =

qp ei(ν−ν
∗)π/2

8αD−2(2π)D−3
, (2.11)

for the normalization coefficient.

We shall employ the mode-sum formula to calculate the positive frequency Wight-

man function:

G(x, x′) =
∑

σ

Φσ(x)Φ
∗
σ(x

′) . (2.12)

Substituting (2.8), with respective coefficient (2.11), into (2.12) we obtain

G(x, x′) =
q (ηη′)(D−1)/2ei(ν−ν

∗)π/2

8αD−2(2π)D−3

∫ ∞

0
dp p

∫

dk eik·∆z

×
+∞
∑

n=−∞

einq∆φJq|n|(pr)Jq|n|(pr
′)H(1)

ν (λη)
[

H(1)
ν (λη′)

]∗
, (2.13)

with ∆z = z − z′, ∆φ = φ − φ′. In appendix A we show that the expression for the

Wightman function can be transformed to the form

G(x, x′) =
q (ηη′)(D−1)/2

π(D+1)/2αD−2

∞
∑′

n=0

cos(nq∆φ)

∫ ∞

0
duu(D−3)/2e−γuIqn(2rr

′u)Kν(2ηη
′u) ,

(2.14)

with

γ = |∆z|2 + r2 + r′2 − η2 − η′2 . (2.15)

– 4 –



J
H
E
P
0
4
(
2
0
0
9
)
0
4
6

In (2.14) the prime on the sign of summation means that the term n = 0 should be halved.

The analysis of the vacuum polarization in the higher dimensional dS spacetime, with

toroidal compactification of extra dimensions, have been developed in [30–32]. Here we

are mainly interested in quantum effects induced by the presence of the cosmic string. In

order to investigate these effects we introduce below the subtracted Wightman function

Gs(x, x
′) = G(x, x′) −G(x, x′)|q=1 . (2.16)

As the presence of the string does not change the curvature for the background manifold

for r 6= 0, the structure of the divergences in the coincidence limit is the same for both

terms on the right hand side. Hence, for these points the function Gs(x, x
′) is finite in the

coincidence limit. Regarding to the value of the parameter q, two different approaches to

obtain Gs(x, x
′) will be provided in the follows.

2.1 Special case with an integer q

The general expression for the scalar Wightman function, eq. (2.14), becomes a simpler

one when q is an integer number. In this case the formula (2.14) is further simplified by

using the relation [50]

∞
∑′

n=0

cos (nq∆φ) Iqn
(

2rr′u
)

=
1

2q

q−1
∑

k=0

exp
[

2rr′u cos (∆φ+ 2πk/q)
]

. (2.17)

Now the integral over u is evaluated with the help of formula

∫ ∞

0
duu(D−3)/2e−cuKν(2ηη

′u) =
21−D√π

Γ(D/2)(ηη′)(D−1)/2
Γ

(

D − 1

2
− ν

)

Γ

(

D − 1

2
+ ν

)

×F
(

D − 1

2
+ ν,

D − 1

2
− ν;

D

2
;
1 − c/2ηη′

2

)

,

where F (a, b; c; z) is the hypergeometric function.

Introducing the notation

AD =
(4π)−D/2

Γ(D/2)
Γ

(

D − 1

2
− ν

)

Γ

(

D − 1

2
+ ν

)

, (2.18)

the Wightman function is presented by a sum of q images of the dS Wightman function,

G(x, x′) = ADα
2−D

q−1
∑

k=0

G(ck(x, x
′)) . (2.19)

In (2.19) we have introduced the notations

G(z) = F

(

D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1 − z

)

, (2.20)

and

ck(x, x
′) =

|∆z|2 + r2 + r′2 − 2rr′ cos(∆φ+ 2πk/q) − (∆η)2

4ηη′
. (2.21)

– 5 –
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The k = 0 term of (2.19) is divergent at the coincidence limit and coincides with the

Wightman function in dS spacetime. Finally, the part in the Wightman function induced

by the cosmic string, Gs(x, x
′), is given by

Gs(x, x
′) = ADα

2−D
q−1
∑

k=1

G
(

ck
(

x, x′
))

, (2.22)

which is finite at the coincidence limit.

Note that by making use of the relation

F

(

D − 1

2
+ ν,

D − 1

2
− ν;

D

2
;
1 − u

2

)

=
2D/2−1 Γ(D/2)

(1 − u2)(D−2)/4
P

1−D/2
ν−1/2 (u), (2.23)

we can express the function G(z) in terms of the associated Legendre function of the first

kind. In the case of massless field and conformal coupling,

ξ = ξc =
D − 2

4(D − 1)
, (2.24)

one has ν = 1/2 and for the function (2.20) we find G(z) = z1−D/2.

2.2 General case

For the general case of q the subtracted Wightman function can be expressed by

Gs(x, x
′) =

(ηη′)(D−1)/2

π(D+1)/2αD−2

∫ ∞

0
duu(D−3)/2e−γuKν(2ηη

′u)

×
∞
∑′

n=0

[

q cos(nq∆φ)Iqn(2rr
′u) − cos(n∆φ)In(2rr

′u)
]

. (2.25)

A more convenient expression for this function can be provided by using the Abel-Plana

formula (see, for instance, [51]) for the summation over n:

∞
∑′

n=0

F (n) =

∫ ∞

0
du F (u) + i

∫ ∞

0
du

F (iu) − F (−iu)
e2πu − 1

. (2.26)

Now we can see that in the evaluation of the difference the terms coming from the first

integral on the right of the Abel-Plana formula cancel out and one obtains

∞
∑′

n=0

[q cos(nq∆φ)Iqn(z) − cos(n∆φ)In(z)] =
2

π

∫ ∞

0
dv cosh (v∆φ) g(q, v)Kiv(z), (2.27)

with the notation

g(q, v) = sinh(πv)

(

1

e2πv/q − 1
− 1

e2πv − 1

)

. (2.28)

As a result the subtracted Wightman function takes the form

Gs(x, x
′) =

2(ηη′)
D−1

2

π
D+3

2 αD−2

∫ ∞

0
duu

D−3

2 e−γuKν

(

2ηη′u
)

×
∫ ∞

0
dv cosh (v∆φ) g(q, v)Kiv

(

2rr′u
)

. (2.29)

– 6 –
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For a conformally coupled massless scalar field we have ν = 1/2:

Gs(x, x
′) =

(ηη′)
D−2

2

π
D+2

2 αD−2

∫ ∞

0
dv cosh(v∆φ)g(q, v)

∫ ∞

0
duu

D−4

2 e−(γ+2ηη′)uKiv(2rr
′u).

(2.30)

In this case the problem under consideration is conformally related to the problem with

a cosmic string in the Minkowski spacetime and the corresponding subtracted Wightman

functions are connected by the standard conformal transformation.

3 The computation of 〈Φ2〉

The formal expression for the vacuum expectation value (VEV) of the field squared is given

by evaluating the Wightman function at the coincidence limit:

〈Φ2(x)〉 = lim
x′→x

G(x, x′) . (3.1)

However this procedure provides a divergent result and to obtain a finite and well defined

value some renormalization procedure is necessary. The important point here is that the

presence of the cosmic string does not introduce additional curvature. Thus, the divergences

are contained in the part corresponding to the pure dS spacetime and the string induced

part is finite for points outside the string. As we have already extracted the first part, the

renormalization procedure is reduced to the renormalization of the dS part in the absence

of the string which is already done in literature [15–17]. So according to the fact that

G(x, x′) = GdS(x, x′) +Gs(x, x
′) (3.2)

we can conclude that

〈Φ2〉 = 〈Φ2〉dS + 〈Φ2〉s, 〈Φ2〉s = Gs(x, x) . (3.3)

Due to the maximal symmetry of the dS spacetime the VEV 〈Φ2〉dS does not depend

on the spacetime point. In the special case of q being an integer number the resulting

formulae are essentially simplified and in the following we present the corresponding cal-

culations separately.

3.1 Special case

For integer q we use (2.22). The VEV is promptly obtained:

〈Φ2〉s = ADα
2−D

q−1
∑

k=1

G(ck), (3.4)

with

ck = y sin2(πk/q), y ≡ r2/η2. (3.5)

Note that the VEV (3.4) is a function of the ratio r/η which is the proper distance from

the string, αr/η, measured in the units of the dS curvature radius α. In the discussion

– 7 –
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Figure 1. The string induced part in the VEV of the field squared as a function of the ratio r/η

for various values of the parameter q for a minimally coupled scalar field with mα = 1 (left panel)

and mα = 2 (right panel) in 4-dimensional dS spacetime.

below, for the evaluation of the VEV of the energy-momentum tensor we will need also the

covariant d’Alembertian for the string induced part in the VEV of the field squared:

∇σ∇σ〈Φ2〉s = 2ADα
−D

q−1
∑

k=1

ck
[

2(1 − 1/y)[ckG
′(ck)]

′ + (D − 1)G′(ck)
]

, (3.6)

where the prime means the derivative with respect to ck. The second derivative in this

expression can be excluded by using the equation for the function G(z) which is easily

obtained from the hypergeometric equation:

(1 − z)[zG′(z)]′ − [1 −D/2 + (D − 1)z]G′(z) −
[

ξD(D − 1) +m2α2
]

G(z) = 0. (3.7)

For the first derivative of this function one has

G′(z) = − 2

D

[

ξD(D − 1) +m2α2
]

F

(

D + 1

2
+ ν,

D + 1

2
− ν;

D

2
+ 1; 1 − z

)

. (3.8)

In figure 1 we have plotted the string induced part in the VEV of the field squared

versus the ratio r/η (proper distance from the string measured in units of α) for minimally

coupled scalar field (ξ = 0) with mα = 1 (left panel) and mα = 2 (right panel) in 4-

dimensional spacetime. The numbers near the curves correspond to the values of the

parameter q. For the left panel the parameter ν is real and for the right one this parameter

is imaginary. In the latter case the oscillatory behavior of the VEV is seen at large distances

from the string. A simple formula for the asymptotic behavior of the VEV of the field

squared at large distances from the string will be given below for the general case of the

parameter q.

For a conformally coupled massless scalar field form (3.4) one finds

〈Φ2〉s =
( η

αr

)D−2 Γ(D/2 − 1)

(4π)D/2

q−1
∑

k=1

sin2−D(πk/q) . (3.9)

– 8 –
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For even values of D, the summation on the right-hand side of the above expression can

be obtained in a closed form by use of the formulae

IN+2(x) =
I ′′N (x) +N2IN (x)

N(N + 1)
, I2(x) =

q2

sin2(qx)
− 1

sin2(x)
, (3.10)

for the sum

IN (x) =

q−1
∑

k=1

sin−N (x+ kπ/q) . (3.11)

In particular, for a 4-dimensional spacetime, D = 4, we need I2(0) = (q2 − 1)/3.

Consequently,

〈Φ2〉s =
q2 − 1

48π2

( η

αr

)2
. (3.12)

For a six-dimensional spacetime, I4(x) is a long expression obtained by the recurrence

relation above, however we find I4(0) = (q2 − 1)(q2 + 11)/45. In this case we have

〈Φ2〉s =

(

q2 − 1
) (

q2 + 11
)

2880π3

( η

αr

)4
. (3.13)

The above results, eqs. (3.12) and (3.13), are analytical functions of q, and by the analytical

continuation they are valid for arbitrary values of q.

3.2 General case

For the general case of the parameter q we have an integral representation for the VEV of

the field squared by using (2.29):

〈Φ2〉s =
8α2−D

(2π)(D+3)/2

∫ ∞

0
dv g(q, v)

∫ ∞

0
dz
e−z

z
Kiv(z)F

(

zη2/r2
)

, (3.14)

where and in the discussion below we use the notation

F (x) = x
D−1

2 exKν(x). (3.15)

As before, we see that the contribution induced by the cosmic string in the VEV of the field

squared depends on the ratio r/η. For the covariant d’Alembertian of the string induced

part in the VEV of the field squared we find

∇σ∇σ〈Φ2〉s =
16α−D

(2π)(D+3)/2

∫ ∞

0
dv g(q, v)

∫ ∞

0
dz e−yzKiv(yz)

×
{

2(1 − 1/y)[zF ′(z)]′ + (1 −D)F ′(z)
}

. (3.16)

Note that for the derivatives of the function F (z) we have the relations

[zF ′(z)]′ = (D − 1 + 2z)F ′(z) −
[

ξD(D − 1) +m2α2 + (D − 2)z
]

F (z)/z, (3.17)

and

F ′(z) = z
D−1

2 ez
[(

D − 1

2z
+
ν

z
+ 1

)

Kν(z) −Kν+1(z)

]

. (3.18)
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For a conformally coupled massless scalar field, ν = 1/2, the formula (3.14) reduces to

〈Φ2〉s =
8(4π)−(D+1)/2

Γ((D − 1)/2)

( η

αr

)D−2
∫ ∞

0
dv g(q, v) Γ(D/2 − 1 + iv)Γ(D/2 − 1 − iv). (3.19)

For even values of D, by using the formula Γ(1 + iv)Γ(1 − iv) = πv/ sinh(πv), the integral

is evaluated explicitly. In particular, for D = 4, 6 we recover the results (3.12) and (3.13).

The general formula for the string induced part in the VEV of the field squared is

simplified in asymptotic regions of small and large distances. For small values of the ratio

r/η (points near the cosmic string) the argument of the Mac-Donald function in (3.14) is

large and to the leading order one has F (x) ≈
√

π/2xD/2−1. With this approximation the

integral over z is evaluated by using the formula [50]
∫ ∞

0
dz zβ−1e−zKiv(z) =

√
π

2β
Γ(β + iv)Γ(β − iv)

Γ(β + 1/2)
, (3.20)

and one finds

〈Φ2〉s ≈
( η

αr

)D−2
∫ ∞

0
dv g(q, v)h(v). (3.21)

In this formula and in the discussion below we use the notation

h(v) =
8(4π)−(D+1)/2

Γ((D − 1)/2)
Γ(D/2 − 1 + iv)Γ(D/2 − 1 − iv). (3.22)

Comparing with (3.19), we conclude that at small distance, the leading order term of the

string induced part in the VEV of the field squared coincides with the corresponding result

for a massless conformally coupled field.

At large distances from the string, r/η ≫ 1, we replace the Mac-Donald function in

F (x) by the corresponding asymptotic expression for small values of the argument. After

that the integral over z is evaluated by formula (3.20) and for real values of the parameter

ν one finds

〈Φ2〉s ≈ α2−DΓ(ν)

πD/2+1Γ(D/2 − ν)

( η

2r

)D−1−2ν
∫ ∞

0
dv g(q, v)

×Γ

(

D − 1

2
− ν + iv

)

Γ

(

D − 1

2
− ν − iv

)

. (3.23)

For a conformally coupled massless scalar field this result coincides with the exact for-

mula (3.19). For imaginary values of ν, in the similar way, we have the following asymp-

totic estimate

〈Φ2〉s ≈ − 4B(q, |ν|)
(4π)D/2αD−2

(η

r

)D−1
sin[2|ν| ln(η/2r) + ψ0], (3.24)

where B(q, |ν|) and the phase ψ0 are defined by the relation

B(q, |ν|)eiψ0 =

∫ ∞

0
dv g(q, v)

Γ((D − 1)/2 + ν + iv)Γ((D − 1)/2 + ν − iv)

sinh(|ν|π)Γ(1 + ν)Γ(D/2 + ν)
. (3.25)

Hence, in this case, at large distances from the string, the string induced part decays as

r1−D and the damping of the corresponding VEV has an oscillatory nature.

– 10 –



J
H
E
P
0
4
(
2
0
0
9
)
0
4
6

4 Vacuum expectation value of the energy-momentum tensor

In this section we shall analyze the contribution to the VEV of the scalar energy-momentum

tensor induced by the cosmic string. As in the previous section we may write

〈Tµν〉 = 〈Tµν〉dS + 〈Tµν〉s , (4.1)

where 〈Tµν〉dS is the corresponding VEV in dS spacetime when the string is absent. The lat-

ter does not depend on the spacetime point and is well-investigated in literature [15–17]. It

corresponds to a gravitational source of the cosmological constant type and, in combination

with the initial cosmological constant Λ, given by (2.2), leads to the effective cosmological

constant Λeff = Λ + 8πG〈T 0
0 〉dS, where G is the Newton gravitational constant. The string

induced contribution is obtained by use of the formula

〈Tµν〉s = lim
x′→x

∂µ′∂νGs

(

x, x′
)

+ [(ξ − 1/4) gµν∇σ∇σ − ξ∇µ∇ν − ξRµν ] 〈Φ2〉s , (4.2)

where

Rµν = (D − 1)gµν/α
2 (4.3)

is the Ricci tensor for the background spacetime.

4.1 Special case

First we consider the special case of integer q. By using the expressions for the Wightman

function and the VEV of the field squared, after long calculations the diagonal components

of the energy-momentum tensor are presented in the form (no summation over µ)

〈T µµ 〉s =
AD
αD

q−1
∑

k=1

f (µ)(ck) +A, (4.4)

where we have defined

A =
[

(ξ − 1/4)∇σ∇σ − ξ(D − 1)/α2
]

〈Φ2〉s. (4.5)

In (4.4) we have introduced the notations

f (0)(z) = (1 − 4ξ)z[zG′(z)]′ +G′(z)/2,

f (1)(z) = (4ξ − 1)z
[

zG′(z)
]′
/y + [1 − 4ξz(1/y + 1)]G′(z)/2, (4.6)

f (2)(z) = (1 − z/y)
[

zG′(z)
]′ − [1 + 4ξz(1 − 1/y)]G′(z)/2,

f (µ)(z) = (1 − 4ξz)G′(z)/2, µ = 3, . . . ,D − 1.

For the non-zero off-diagonal component one has

〈T 0
1 〉s =

ηAD
rαD

q−1
∑

k=1

ck
{

(1 − 4ξ)[ckG
′(ck)]

′ + 2ξG′(ck)
}

. (4.7)
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Figure 2. The vacuum energy density induced by the string in 4-dimensional dS spacetime versus

r/η for a minimally coupled scalar field with mα = 1 (left panel) and mα = 2 (right panel).

We recall that for a conformally coupled massless scalar field one has G(z) = z1−D/2 and,

as it can be easily seen from (4.7), the off-diagonal component vanishes. The explicit

expression for the part A directly follows from formulae (3.4) and (3.6):

A =
AD
αD

q−1
∑

k=1

{

(4ξ − 1) ck

[(

1 − 1

y

)

[ckG
′(ck)]

′ +
D − 1

2
G′(ck)

]

− ξ(D − 1) G(ck)

}

.

(4.8)

Now it can be checked that the components of the energy-momentum tensor satisfy

the trace relation

〈T µµ 〉s = D(ξ − ξc)∇µ∇µ〈Φ2〉s +m2〈Φ2〉s. (4.9)

In particular, for a conformally coupled massless scalar this tensor is traceless and the trace

anomalies are contained in the purely dS part only. Note that from the covariant conser-

vation equation ∇νT
ν
µ = 0 we have also the following relations between the components of

the energy-momentum tensor:

∂ηT
0
0 +

1

η

(

T µµ −DT 0
0

)

− 1

r
∂r
(

T 1
0 r
)

= 0,

∂ηT
0
1 +

D

η
T 0

1 − 1

r
∂r
(

T 1
1 r
)

+
1

r
T 2

2 = 0. (4.10)

These relations are fullfilled separately for pure and string induced parts in the VEV of

the energy-momentum tensor.

In figure 2 the string induced part in the VEV of the energy density is depicted as a

function of r/η in the case of a minimally coupled scalar field with mα = 1 (left panel) and

mα = 2 (right panel) in 4-dimensional dS spacetime. For the right panel the parameter ν

is imaginary and the decay of the VEV is oscillatory. In the next subsection this feature

will be seen from the corresponding asymptotic formula.
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4.2 General case

For an arbitrary value of q, we need the formulae (2.29) and (3.14). For this case the

calculations of the components of the energy-momentum tensor are much longer. The final

results for the diagonal components are given below (no summation over µ):

〈T µµ 〉s = A− 8α−D

(2π)(D+3)/2

∫ ∞

0
dv g(q, v)

∫ ∞

0
dz e−yzKiv(yz)g

(µ)(z), (4.11)

where A is defined by the relation (4.5) and the following notations are introduced

g(0)(z) = (4ξ − 1)[zF ′(z)]′ + F (z),

g(1)(z) = (1 − 4ξ)[zF ′(z)]′/y − 2ξ(1/y + 1)F ′(z) + F (z), (4.12)

g(2)(z) = [zF ′(z)]′/y − 2 [ z + ξ(1 − 1/y)]F ′(z) − F (z),

g(µ)(z) = −2ξF ′(z) + F (z), µ = 3, . . . ,D − 1.

In addition to diagonal components there is also non-zero off-diagonal component

〈T 0
1 〉s = − 8α−Dη/r

(2π)(D+3)/2

∫ ∞

0
dv g(q, v)

∫ ∞

0
dz Kiv(zy)e

−zy
{

(4ξ − 1)[zF ′(z)]′ + 2ξF ′(z)
}

.

(4.13)

Note that for the covariant d’Alembertian in (4.5) we have formula (3.16) and for this part

one obtains

A =
8α−D

(2π)(D+3)/2

∫ ∞

0
dv g(q, v)

∫ ∞

0
dze−yzKiv(yz)

×
{

(4ξ − 1)

[(

1 − 1

y

)

[zF ′(z)]′ +
1 −D

2
F ′(z)

]

− ξ
D − 1

z
F (z)

}

. (4.14)

It can be explicitly checked that the string induced parts in the components of the VEV

of the energy-momentum tensor satisfy the trace relation (4.9).

For a conformally coupled massless scalar field one has ν = 1/2 and the off-diagonal

component (4.13) vanishes. For the diagonal components in this case one has (no summa-

tion over µ)

〈T µµ 〉s =
〈T 2

2 〉s
1 −D

= − 1

D − 1

( η

αr

)D
∫ ∞

0
dv v2g(q, v)h(v). (4.15)

where the function h(v) is defined by relation (3.22).

The asymptotic behavior of the string induced part in the VEV of the energy-

momentum tensor at small and large distances is investigated in the way similar to that

used above for the case of the field squared. For points near the string, r/η ≪ 1, to the

leading order we have

〈T 0
0 〉s ≈ 〈T 3

3 〉s ≈ −
( η

αr

)D
∫ ∞

0
dv g(q, v)h(v)

[

(D − 2)2 (ξ − ξc) +
v2

D − 1

]

, (4.16)

〈T 1
1 〉s ≈ 〈T 2

2 〉s
1 −D

≈
( η

αr

)D
∫ ∞

0
dv g(q, v)h(v)

[

(D − 2) (ξ − ξc) −
v2

D − 1

]

, (4.17)
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For the off-diagonal component the corresponding formula takes the form

〈T 0
1 〉s ≈ −(D − 2) (ξ − ξc)

D − 1

α

( η

αr

)D−1
∫ ∞

0
dv g(q, v)h(v). (4.18)

In the case of a conformally coupled massless scalar field these formulae coincide with the

exact results.

At large distances form the string, r/η ≫ 1, and for real values of the parameter ν for

the energy density we have the following asymptotic expression:

〈T 0
0 〉s ≈ − [(D − 1 − 2ν) (ξ − 1/4) + ξ]

(D − 1)α−DΓ(ν)

πD/2+1Γ (D/2 − ν)

( η

2r

)D−1−2ν

×
∫ ∞

0
dv g(q, v)Γ

(

D − 1

2
− ν + iv

)

Γ

(

D − 1

2
− ν − iv

)

. (4.19)

The corresponding expressions for the other components are found from the relations (no

summation over µ)

〈T µµ 〉s ≈ 2ν

D − 1
〈T 0

0 〉s, µ = 1, 2, . . . ,D − 1,

〈T 0
1 〉s ≈ η

r

D − 1 − 2ν

D − 1
〈T 0

0 〉s. (4.20)

In this limit the diagonal vacuum stresses are isotropic. Note that for a conformally coupled

massless scalar field these leading terms vanish and it is necessary to keep the next terms in

the asymptotic expansion. For imaginary values of the parameter ν, in the way similar to

that used above for the field squared, it can be seen that the string induced parts in the diag-

onal components of the energy-momentum tensor behave as (η/r)D−1 sin[2|ν| ln(η/2r)+ψ1],

where the phase is different for separate components. For the off-diagonal component the

amplitude of the oscillations decays as (η/r)D.

5 Conclusion

In this paper we have investigated quantum effects associated with massive scalar fields in

higher-dimensional dS space in presence of an idealized cosmic string. In fact we were more

interested to calculate the contributions induced by the conical structure of the sub-space

produced by the string. In order to develop this analysis we have presented the complete

Wightman function as the sum of two contributions: i) The first one corresponds to the

Wightman function on the bulk in the absence of the string and ii) the second one is

induced by the presence of the string. First in this analysis, we have considered the case

where the parameter q, the fractional part of 2π by the planar angle on the conical surface is

an integer number. In this case the Wightman function is presented as image sum of the dS

Wightman functions, and the VEV for the field squared and the energy-momentum tensor

induced by the string, have been calculated by using the subtracted Wightman function

given in (2.22) with (2.20). For points away from the string the corresponding Wightman

function is finite at the coincidence limit and can be used directly for these evaluations.
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For general value of the parameter q, we have used the Abel-Plana formula for the

summation over the azimuthal quantum number to provide an explicit representation

for the subtracted Wightman function, eq. (2.29). Also for this case we have provided

the VEV for the field squared and energy-momentum tensor in integral forms, formu-

lae (3.14), (4.11), (4.13). These VEVs depend on the radial and time coordinates in the

combination of r/η which is the proper distance from the string measured in the units of the

dS curvature radius α. These formulae are further simplified for points near the string and

at large distance from it. At small distance, the leading order term of the string induced

parts in the VEVs coincide with the corresponding quantities for a massless conformally

coupled field. In this limit the VEVs behave like (αr/η)2−D in the case of 〈Φ2〉s and like

(αr/η)−D for diagonal components of the energy-momentum tensor. For the off-diagonal

component the leading term vanishes and one has 〈T 0
1 〉s ∼ (αr/η)1−D . As the pure dS parts

in the VEVs are constants, near the string, the string induced parts dominate. At large

distances from the string and for real values of the parameter ν, the string induced parts

in the VEVs of the field squared and in the diagonal components of the energy-momentum

tensor monotonically decay as (η/r)D−1−2ν . At large distances and for imaginary ν the

corresponding string induced parts oscillate with the amplitude going to zero as (η/r)D−1.

The analysis of VEV associated with scalar and fermionic quantum fields in the pres-

ence of composite topological defects have been presented in [52] and [53], respectively.

In these papers a global monopole and cosmic string have been considered in a higher-

dimensional spacetime. There, by using similar procedure as presented here, we calculated

the contribution induced by the cosmic string on the corresponding vacuum averages.
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A Integral representation for the Wightman function

In order to transform the Wightman function, we integrate over the angular part of the

vector k by using the formula

∫

dk eik·∆zF (k) = (2π)(D−3)/2

∫ ∞

0
dk kD−4F (k)

J(D−5)/2(k|∆z|)
(k|∆z|)(D−5)/2

. (A.1)

Then we present the product of the Hankel functions in terms of the MacDonald function,

ei(ν−ν
∗)π/2H(1)

ν (λη)[H(1)
ν (λη′)]∗ =

4

π2
Kν(−iλη)Kν(iλη

′), (A.2)
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and use the formula [54]

Kν(a)Kν(b) =
1

2

∫ ∞

0
dx

∫ +∞

−∞
dy x−1 exp

[

−2νy − abx−1 cosh (2y) − x/2 −
(

a2 + b2
)

/2x
]

.

(A.3)

As a result the expression for the Wightman function is presented in the form

G(x′, x) =
q (ηη′)(D−1)/2

αD−2(2π)(D+1)/2|∆z|(D−5)/2

∫ ∞

0
dp p

+∞
∑

n=−∞

einq∆φ

×Jq|n|(pr)Jq|n|(pr′)
∫ ∞

0
dk k(D−3)/2J(D−5)/2(k|∆z|)

×
∫ ∞

0
dx

∫ +∞

−∞
dy x−1 exp

(

−2νy − x/2 − λ2β/2x
)

, (A.4)

with the notation

β = 2ηη′ cosh(2y) − η2 − η′2. (A.5)

The integral over k in eq. (A.4) is taken with the help of the formula

∫ ∞

0
dk k(D−3)/2J(D−5)/2(k|∆z|) exp

(

−k2β/2x
)

= |∆z|(D−5)/2

(

x

β

)(D−3)/2

exp

(

−|∆z|2x
2β

)

.

(A.6)

This leads to the following result

G(x′, x) =
q (ηη′)(D−1)/2

αD−2(2π)(D+1)/2

+∞
∑

n=−∞

einq∆φ
∫ ∞

0
dp pJq|n|(pr)Jq|n|(pr

′)

∫ +∞

−∞
dy exp (−2νy)

×2(D−3)/2

∫ ∞

0
duu(D−5)/2 exp

[

−
(

β + |∆z|2
)

u− p2/4u
]

. (A.7)

After the integration over p by the formula

∫ ∞

0
dp pJq|n|(pr)Jq|n|

(

pr′
)

e−p
2/4u = 2u exp

[

−
(

r2 + r′2
)

u
]

Iq|n|
(

2rr′u
)

, (A.8)

from (A.7) we find

G(x′, x) =
q (ηη′)(D−1)/2

αD−2(2π)(D+1)/2
2(D−1)/2

+∞
∑

n=−∞

einq∆φ
∫ +∞

−∞
dy exp(−2νy)

×
∫ ∞

0
duu(D−3)/2 exp

[

−
(

β + |∆z|2 + r2 + r′2
)

u
]

Iq|n|
(

2rr′u
)

. (A.9)

Now we consider the integral over y. Introducing a new integration variable z = e2y

one finds
∫ +∞

−∞
dy exp (−2νy) exp

(

−2ηη′ cosh(2y)u
)

= Kν

(

2ηη′u
)

. (A.10)

Hence, for the Wightman function we find the final expression (2.14).
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